Ocorreu um erro. Detalhes Ocultar
Você tem páginas não gravadas. Restaurar Cancelar

Camboja

  • População, pessoas:16.005.373 (2017)
  • Área, km2:176.520 (2017)
  • PIB per capita, US$:1.384 (2017)
  • PIB, bilhões em US$ atuais:22,2 (2017)
  • Índice de GINI:30,76 (2012)
  • Facilidade para Fazer Negócios:135 (2017)

Climate Change

Todos os conjuntos de dados:  A C E F G M U W
  • A
    • agosto 2015
      Fonte: World Resources Institute
      Carregamento por: Knoema
      Acesso em 25 março, 2019
      Selecionar Conjunto de dados
      Suggested citation: Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.    Supplemental Materials: Country Scores                         WRI projected future country-level water stress for 2020, 2030, and 2040 under business-as-usual (BAU), optimistic, and pessimistic scenarios. Each tab lists country projected water stress scores for each scenario and year, weighted by overall water withdrawals. Scores weighted by individual sectors (agricultural, domestic, and industrial) are provided as well.   These global projections are best suited to making comparisons among countries for the same year and among scenarios and decades for the same region. More detailed and localized data or scenarios can better estimate potential outcomes for specific regions and expose large sub-national variations that are subsumed under countrywide water-stress values. The country indicators face persistent limitations in attempting to simplify complex information, such as spatial and temporal variations, into a single number. They also do not account for the governance and investment structure of the water sector in different countries.    It is important to note the inherent uncertainty in estimating any future conditions, particularly those associated with climate change, future population and economic trends, and water demand. Additionally, care should be taken when examining the change rates of a country’s projected stress levels between one year and another, because the risk-score thresholds are not linear. For more information on these limitations, see the technical note.   Projections are described in further detail in: Luck, M., M. Landis, and F. Gassert, “Aqueduct Water Stress Projections: Decadal Projections of Water Supply and Demand Using CMIP5 GCMs,” Technical note (Washington, DC: World Resources Institute, April 2015), http://www.wri.org/publication/aqueduct-water-stress-projections.   Water Stress withdrawals / available flow Water stress measures total annual water withdrawals (municipal, industrial, and agricultural) expressed as a percentage of the total annual available blue water. Higher values indicate more competition among users. Score Value [0-1) Low (<10%) [1-2) Low to medium (10-20%) [2-3) Medium to high (20-40%) [3-4) High (40-80%) [4-5] Extremely high (>80%)    
  • C
    • outubro 2017
      Fonte: World Resources Institute
      Carregamento por: Knoema
      Acesso em 06 agosto, 2018
      Selecionar Conjunto de dados
      Data Citation: CAIT Climate Data Explorer. 2017. Washington, DC: World Resources Institute. Available online at: http://cait.wri.org   CAIT data carries a Creative Commons Attribution-NonCommercial 4.0 International license   CAIT Historic allows for easy access, analysis and visualization of the latest available international greenhouse gas emissions data. It includes information for 186 countries, 50 U.S. states, 6 gases, multiple economic sectors, and 160 years - carbon dioxide emissions for 1850-2012 and multi-sector greenhouse gas emission for 1990-2012.
    • janeiro 2016
      Fonte: World Bank
      Carregamento por: Knoema
      Acesso em 22 setembro, 2016
      Selecionar Conjunto de dados
    • dezembro 2012
      Fonte: World Bank
      Carregamento por: Knoema
      Acesso em 05 setembro, 2016
      Selecionar Conjunto de dados
    • dezembro 2017
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 20 maio, 2019
      Selecionar Conjunto de dados
      GHG emissions data from the cultivation of organic soils are those associated with nitrous oxide gas from organic soils under cropland (item: Cropland organic soils) and grassland (item: Grassland organic soils). The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html). GHG emissions are provided by country, region and special groups, with global coverage, relative to the period 1990-present (with annual updates) and with projections for 2030 and 2050, expressed both as Gg N2O and Gg CO2eq, by cropland, grassland and by their aggregation. Implied emission factor for N2O as well activity data (areas) are also provided.
  • E
    • fevereiro 2018
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 22 março, 2019
      Selecionar Conjunto de dados
      GHG emissions from manure applied to soils consist of direct and indirect nitrous oxide (N2O) emissions from manure nitrogen (N) added to agricultural soils by farmers. Specifically, N2O is produced by microbial processes of nitrification and de-nitrification taking place on the application site (direct emissions), and after volatilization/re-deposition and leaching processes (indirect emissions). The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories vol. 4, ch. 10 and 11 (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html). GHG emissions are provided as direct, indirect and total by country, regions and special groups, with global coverage, relative to the period 1961-present (with annual updates) and with projections for 2030 and 2050, expressed as Gg N2O and Gg CO2eq, by livestock species (asses, buffaloes, camels, cattle (dairy and non-dairy), chickens (broilers and layers), ducks, goats, horses, llamas, mules, sheep, swine (breeding and market) and turkeys) and by species aggregates (all animals, camels and llamas, cattle, chickens, mules and asses, poultry birds, sheep and goats, swine). Implied emission factor for N2O and activity data (N content in manure) are also provided.
    • fevereiro 2018
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 22 março, 2019
      Selecionar Conjunto de dados
      Greenhouse gas (GHG) emissions from synthetic fertilizers consist of nitrous oxide gas from synthetic nitrogen additions to managed soils. Specifically, N2O is produced by microbial processes of nitrification and de-nitrification taking place on the addition site (direct emissions), and after volatilization/re-deposition and leaching processes (indirect emissions). The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories vol. 4, ch. 11 (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html). GHG emissions are provided as direct, indirect and total by country, regions and special groups, with global coverage, relative to the period 1961-present (with annual updates) and with projections for 2030 and 2050, expressed as Gg N2O and Gg CO2eq. Implied emission factor for N2O and activity data (consumption) are also provided.
    • dezembro 2017
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 20 maio, 2019
      Selecionar Conjunto de dados
      Greenhouse Gas (GHG) emissions from burning of biomass consist of methane and nitrous oxide gases from biomass combustion of forest land cover classes ‘Humid and Tropical Forest’ and ‘Other Forests’, and of methane, nitrous oxide, and carbon dioxide gases from combustion of organic soils. The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html). GHG emissions are provided by country, with global coverage, relative to the period 1990-present (with annual updates), expressed as Gg CH4, Gg N2O, Gg CO2, Gg CO2eq and Gg CO2eq from both CH4 and N2O, by land cover class (humid tropical forest, other forest, organic soils) and by aggregate (burning - all categories). Implied emission factors for N2O, CH4 and CO2 as well activity data (burned area and biomass burned) are also provided.
    • dezembro 2017
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 20 maio, 2019
      Selecionar Conjunto de dados
      Greenhouse gas (GHG) emissions data from cropland are currently limited to emissions from cropland organic soils. They are those associated with carbon losses from drained histosols under cropland. The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html). GHG emissions are provided by country, region and special groups, with global coverage, relative to the period 1990-present (with annual updates), expressed as net emissions/removal Gg CO2 and Gg CO2eq. Implied emission factor for C, net stock change Gg C and activity data (area) are also provided.
    • fevereiro 2016
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 20 maio, 2019
      Selecionar Conjunto de dados
      Annual net CO2 emission/removal from Forest Land consist of net carbon stock gain/loss in the living biomass pool (aboveground and belowground biomass) associated with Forest and Net Forest Conversion. The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html) and using area and carbon stocks data compiled by countries in the FAO Global Forest Resource Assessments (http://www.fao.org/forestry/fra/en/). GHG emissions are provided by country, regions and special groups, with global coverage, relative to the period 1990-present (with annual updates), expressed as net stock change Gg C, net emissions/removals Gg CO2 and CO2eq, by forest or net forest conversion and by aggregate (forest land). Implied emission factor for CO2 as well as activity data (area, net area difference, total forest area and carbon stock in living biomass) are also given.
    • dezembro 2017
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 20 maio, 2019
      Selecionar Conjunto de dados
      Greenhouse gas (GHG) emissions data from grassland are currently limited to emissions from grassland organic soils. They are those associated with carbon losses from drained histosols under grassland. The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol6.html). GHG emissions are provided by country, region and special groups, with global coverage, relative to the period 1990-present (with annual updates), expressed as net emissions/removal Gg CO2 and Gg CO2eq. Implied emission factor for C, net stock change Gg C and activity data (area) are also provided.
    • dezembro 2017
      Fonte: Food and Agriculture Organization
      Carregamento por: Knoema
      Acesso em 20 maio, 2019
      Selecionar Conjunto de dados
      Land Use Total contains all GHG emissions and removals produced in the different Land Use sub-domains, representing the three IPCC Land Use categories: cropland, forest land, and grassland, collectively called emissions/removals from the Forestry and Other Land Use (FOLU) sector. FOLU emissions consist of CO2 (carbon dioxide), CH4 (methane) and N2O (nitrous oxide) associated with land management activities. CO2 emissions/removals are derived from estimated net carbon stock changes in above and below-ground biomass pools of forest land, including forest land converted to other land uses. CH4 and N2O, and additional CO2 emissions are estimated for fires and drainage of organic soils. The FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html). GHG emissions are provided as by country, regions and special groups, with global coverage, relative to the period 1990-present (with annual updates), expressed as Gg CO2eq from CH4 and N2O, net emissions/removals as GG CO2 and Gg CO2eq, by underlying land use emission sub-domain and by aggregate (land use total).
  • F
    • dezembro 2016
      Fonte: Carbon Dioxide Information Analysis Center
      Carregamento por: Knoema
      Acesso em 17 maio, 2017
      Selecionar Conjunto de dados
      World and National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring. Source: Tom Boden, Gregg Marland and Bob Andres (Oak Ridge National Laboratory)
  • G
    • novembro 2018
      Fonte: Emission Database for Global Atmospheric Research
      Carregamento por: Knoema
      Acesso em 14 fevereiro, 2019
      Selecionar Conjunto de dados
      Direct greenhouse gases: Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide (N2O), Hydrofluorocarbons (HFC-23, 32, 125, 134a, 143a, 152a, 227ea, 236fa, 245fa, 365mfc, 43-10-mee), Perfluorocarbons (PFCs: CF4, C2F6, C3F8, c-C4F8, C4F10, C5F12, C6F14, C7F16), Sulfur Hexafluoride (SF6), Nitrogen Trifluoride (NF3) and Sulfuryl Fluoride (SO2F2). Emissions are calculated by individual countries using country-specific information. The countries are organized in different world regions for illustration purposes. Emissions of some small countries are presented together with other countries depending on country definition and availability of activity statistics. Source: European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency.
    • outubro 2017
      Fonte: Emission Database for Global Atmospheric Research
      Carregamento por: Knoema
      Acesso em 10 janeiro, 2018
      Selecionar Conjunto de dados
      Emissions are calculated for the following substances: 1) Direct greenhouse gases: Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide (N2O), Hydrofluorocarbons (HFC-23, 32, 125, 134a, 143a, 152a, 227ea, 236fa, 245fa, 365mfc, 43-10-mee), Perfluorocarbons (PFCs: CF4, C2F6, C3F8, c-C4F8, C4F10, C5F12, C6F14, C7F16), Sulfur Hexafluoride (SF6), Nitrogen Trifluoride (NF3) and Sulfuryl Fluoride (SO2F2); 2) Ozone precursor gases: Carbon Monoxide (CO), Nitrogen Oxides (NOx), Non-Methane Volatile Organic Compounds (NMVOC) and Methane (CH4). 3) Acidifying gases: Ammonia (NH3), Nitrogen oxides (NOx) and Sulfur Dioxide (SO2). 4) Primary particulates: Fine Particulate Matter (PM10) - Carbonaceous speciation (BC , OC) is under progress. 5) Stratospheric Ozone Depleting Substances: Chlorofluorocarbons (CFC-11, 12, 113, 114, 115), Halons (1211, 1301, 2402), Hydrochlorofluorocarbons (HCFC-22, 124, 141b, 142b), Carbon Tetrachloride (CCl4), Methyl Bromide (CH3Br) and Methyl Chloroform (CH3CCl2). Emissions (EM) for a country C are calculated for each compound x on an annual basis (y) and sector wise (for i sectors, multiplying on the one hand the country-specific activity data (AD), quantifying the human activity for each of the i sectors, with the mix of j technologies (TECH) for each sector i, and with their abatement percentage by one of the k end-of-pipe (EOP) measures for each technology j, and on the other hand the country-specific emission factor (EF) for each sector i and technology j with relative reduction (RED) of the uncontrolled emission by installed abatement measure k. Emissions in are calculated by individual countries using country-specific information. The countries are organized in different world regions for illustration purposes. Emissions of some small countries are presented together with other countries depending on country definition and availability of activity statistics.
  • M
  • U
    • junho 2015
      Fonte: United Nations Environment Programme
      Carregamento por: Pallavi S
      Acesso em 30 junho, 2016
      Selecionar Conjunto de dados
      The GEO Data Portal is the authoritative source for data sets used by UNEP and its partners in the Global Environment Outlook (GEO) report and other integrated environment assessments. The GEO Data Portal gives access to a broad socio-economic data sets from authoritative sources at global, regional, sub-regional and national levels. The contents of the Data Portal cover environmental themes such as climate, forests and freshwater and many others, as well as socioeconomic categories, including education, health, economy, population and environmental policies.
  • W
    • agosto 2018
      Fonte: World Bank
      Carregamento por: Knoema
      Acesso em 21 agosto, 2018
      Selecionar Conjunto de dados
      Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.